Time-frequency signal analysis based on the windowed fractional Fourier transform
نویسندگان
چکیده
A new signal-adaptive joint time-frequency distribution for the analysis of nonstationary signals is proposed. It is based on a fractionalFourier-domain realization of the weighted Wigner distribution producing auto-terms close to the ones in the Wigner distribution itself, but with reduced cross-terms. Improvement over the standard time-frequency representations is achieved when the principal axes of a signal (defined as mutually orthogonal directions in the time-frequency plane for which the width of the signal’s fractional power spectrum is minimum or maximum) do not correspond to time and frequency. The computational cost of this fractional-domain realization is the same as the computational cost of the realizations in the time or the frequency domain, since the windowed Fourier transform of the fractional Fourier transform of a signal corresponds to the short-time Fourier transform of the signal itself, with the window being the fractional Fourier transform of the initial one. The appropriate fractional domain is found from the knowledge of three second-order fractional Fourier transform moments. Numerical simulations confirm a qualitative advantage in the time-frequency representation, when the calculation is done in the optimal fractional domain. The approach can be generalized to the time-frequency distributions from the Cohen class.
منابع مشابه
Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملA fast algorithm for vertex-frequency representations of signals on graphs
The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational compl...
متن کاملPerturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function
Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve b...
متن کاملFractional Fourier Transform Based OFDMA for Doubly Dispersive Channels
The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...
متن کاملOn optimum oversampling in the Gabor scheme
The windowed Fourier transform of a time signal is considered, as well as a way to reconstruct the signal from a su ciently densely sampled version of its windowed Fourier transform using a Gabor representation; followingGabor, sampling occurs on a two-dimensional time-frequency lattice with equidistant time intervals and equidistant frequency intervals. In the limit of innitely dense sampling,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 83 شماره
صفحات -
تاریخ انتشار 2003